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The aim is to assess the nonclassical component of material nonlinearity in several classes of mate-

rials with weak, intermediate, and high nonlinear properties. In this contribution, an optimized non-

linear resonant ultrasound spectroscopy (NRUS) measuring and data processing protocol applied to

small samples is described. The protocol is used to overcome the effects of environmental condition

changes that take place during an experiment, and that may mask the intrinsic nonlinearity. Exter-

nal temperature fluctuation is identified as a primary source of measurement contamination. For

instance, a variation of 0.1 �C produced a frequency variation of 0.01%, which is similar to the

expected nonlinear frequency shift for weakly nonlinear materials. In order to overcome environ-

mental effects, the reference frequency measurements are repeated before each excitation level and

then used to compute nonlinear parameters. Using this approach, relative resonant frequency shifts

of 10�5 can be measured, which is below the limit of 10�4 often considered as the limit of NRUS

sensitivity under common experimental conditions. Due to enhanced sensitivity resulting from the

correction procedure applied in this work, nonclassical nonlinearity in materials that before have

been assumed to only be classically nonlinear in past work (steel, brass, and aluminum) is reported.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3641405]
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I. INTRODUCTION

The evolution of material nonlinearity is of great inter-

est for nondestructive evaluation and structural health moni-

toring. In homogeneous elastic materials, only classical

lattice nonlinearity arising from weak anharmonicity of the

interatomic potential is typical (Landau and Lifshitz, 1986).

In contrast, microinhomogeneous solids (such as rocks, or

damage materials) exhibit a significant increase of elastic

material nonlinearity arising from strongly enhanced strains

at the soft defects (i.e., grain boundary, cracks) (Ostrovsky

and Johnson, 2001; Guyer and Johnson, 2009). Such meso-

scopic nonlinearity arising from the presence of soft defects

in an elastic matrix can be considered as nonclassical as

opposed to the purely classical lattice nonlinearity. Non-

classical nonlinearity differs from classical lattice nonlinear-

ity not only quantitatively, but also with qualitative

distinctive features such as hysteretic character and simulta-

neous amplitude-dependent variations in elasticity and dissi-

pation (Guyer et al., 1995; Guyer and Johnson, 2009).

Several recent literature reports evidenced that, in microin-

homogeneous and damaged solids, other mechanisms which

are linear and nonhysteretic by nature, such as dissipation

mechanisms (e.g., thermoelastic or viscous losses) arising at

the very same soft structural defects also contribute to the

overall amplitude-dependent dissipation, and thus to the non-

classical mesoscopic material nonlinearity (Zaitsev and Sas,

2000; Gusev and Tournat, 2005; Fillinger et al., 2006; Zait-

sev and Matveev, 2006).

A number of nonlinear acoustic techniques based on

harmonic generation (Breazeale and Thompson, 1963; Mor-

ris et al., 1979; Cantrell and Yost, 2001), frequency mixing

(Van den Abeele et al., 2000b; Donskoy et al., 2001; Court-

ney et al., 2008), acousto-elastic effect (Nagy, 1998; Renaud

et al., 2009), dynamic resonance characteristics (Van den

Abeele et al., 2000a; Nazarov et al., 2009), cross-

modulation technique (Zaitsev et al., 2006), cascade modula-

tion method (Zaitsev et al., 2011), or cascade cross-

modulation (Zaitsev et al., 2008) have been developed to

monitor damage and progressive damage in various materi-

als such as concrete (Van den Abeele and De Visscher,

2000; Bentahar et al., 2006; Payan et al., 2007; Bruno et al.,
2009), metallic structures (Nazarov and Kolpakov, 2000;

Straka et al., 2008; Zagrai et al., 2008), composites (Van

den Abeele et al., 2001; Meo et al., 2008; Van Den Abeele

et al., 2009; Aymerich and Staszewski, 2010), and more

recently in human cortical bone (Muller et al., 2008) and tra-

becular bone (Renaud et al., 2008; Moreschi et al., 2011).

This work has been motivated by the importance of

detecting microdamage accumulation in bone specimens

using nondestructive methods (Muller et al., 2005; Muller

et al., 2008). This requires high-accuracy measurements

that are sensitive specifically to small defects (i.e., micro-

damage) concentration. To this purpose, nonlinear acoustical

techniques such as harmonic generation or conventional
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modulation interactions, in which the contribution of a small

amount of microdamage to the material nonlinearity can be

masked by the classical nonlinearity, may not be an appro-

priate choice. In contrast, the intentional use of acoustical

techniques that are highly sensitive to nonclassical nonlinear

effects which can be considered as being the signature of the

presence of damage must be favored. Among these are

unconventional modulation techniques (Zaitsev et al., 2006;

Zaitsev et al., 2008; Zaitsev et al., 2009, 2011) and nonlinear

resonant ultrasound spectroscopy (NRUS) (Johnson et al.,
1996; Van den Abeele et al., 2000a) that allow one to reduce

the masking role of the classical nonlinearity. NRUS, which

allows the observation of simultaneous amplitude-dependent

variations in elastic modulus and dissipation, has been

shown to be extremely sensitive to intrinsic damage in sev-

eral materials, including human bone (Muller et al., 2005;

Bentahar et al., 2006; Payan et al., 2007; Muller et al., 2008;

Zacharias et al., 2009; Chen et al., 2010; Rivière et al.,
2010). This is also a primary drawback since NRUS is also

very sensitive to numerous other factors, including tempera-

ture, humidity, and bonding quality, which may affect the

measured nonlinear response and may hinder recovery of the

desired nonlinear properties of the material. Measurement

errors and poor precision are among the key points to solve

in order to broadly apply nonlinear methods to practical

problems and increase their sensitivity of detection of subtle

variations in microdamage.

In this study, we present an optimized NRUS method, to

minimize measurement errors and maximize precision. Our

goal is to assess the elastic and dissipative nonclassical non-

linear parameters as well as the variability in these parame-

ters, using several classes of materials with weak,

intermediate, and high nonlinear properties. The protocol

outlined here can be modified for other nonlinear acoustics

procedures as well. In Sec. II, we present the theoretical

background for NRUS measurements of nonclassical non-

linearity, assuming that it arises purely from quadratic

hysteretic mechanisms. The measurement protocol of simul-

taneous amplitude-dependent variations in the elasticity and

dissipation with careful compensation of thermal effects is

detailed in Sec. III, whereas results are presented in Sec. IV.

Section V offers a discussion of the data observed in several

classes of materials taking into account several mechanisms

contributing to the observed nonclassical nonlinearity.

II. BACKGROUND

Hysteretic elastic behaviors [also called nonclassical,

nonlinear mesoscopic (Guyer and Johnson, 2009) and

nonlinear-nonequilibrium (Pasqualini et al., 2007)] are usu-

ally interpreted at the mesoscopic scale as a consequence of

the presence of intrinsic damage (disbonding, micro-cracks,

dislocation-point defect interactions, glassy dynamics) and

may include nonlinear internal friction (dislocations, grain

boundary effects, recovery bonds) and structural properties

(geometrically flat porosity and irregular geometry resulting

in stress localization). In contrast, “classical” nonlinearity of

the Landau type is due to atomic anharmonicity (Landau and

Lifshitz, 1986). It is commonly observed that the hysteretic

regime is visible for strains above 10�7–10�6 in experiments

conducted at ambient pressure in Earth and damaged solids

(TenCate et al., 2004). In a typical NRUS experiment, the

sample is probed using a swept frequency wave at an eigen-

mode of the sample, applying progressively increasing drive

amplitude level (Johnson and Sutin, 2005). Hysteretic (non-

classical) nonlinearity is manifest as a resonance frequency

shift and damping for increasing voltage drive level which is

proportional to the peak strain amplitude (Guyer et al.,
1995). One of the most widely used models is a phenomeno-

logical description based on the Preisach–Mayergoyz space

(PM space) (Guyer et al., 1995). The following represents

the nonlinear stress–strain relationship:

rðe; _eÞ ¼ K0

�
e� be2 � de3

þ a
2

h
2ðDeÞe� signð _eÞððDeÞ2 � e2Þ

i�
; (1)

where K0, r, e, _e, and De are the linear modulus, the stress,

the instantaneous strain, the time derivative of the instanta-

neous strain, and the maximum strain excursion over a wave

cycle, respectively. The modulus K can be derived from this

model by combining the classical nonlinear parameters b
and d from Landau theory with the hysteretic nonlinear pa-

rameter a.

When hysteretic nonlinearities exceed classical nonli-

nearities [generally for strains above approximately 10�6

(Johnson and Sutin, 2005)], two nonlinear parameters af and

aQ describing the frequency shift Df and the change of

energy loss as a function of strain, respectively, can be

derived from Eq. (1):

f � f0

f0

¼ Df

f0
¼ af

2
De; (2)

1

Q
� 1

Q0

¼ aQ

2
De; (3)

where f and Q are the resonance frequency and Q-factor

(inversely proportional to the modal damping ratio) at

increased strain level, f0 and Q0 their corresponding value at

the lowest drive amplitude (often presumed to be elastically

linear if the initial drive amplitude is low enough) (Johnson

and Sutin, 2005). Both af and aQ are related to the general

nonlinear parameter a of Eq. (1) (Guyer et al., 1995).

The Read ratio paQ/2af between the complementary var-

iation in the decrement (pDQ�1) and complementary relative

variation in the elastic modulus (DK/K0� 2Df/f0), introduced

to characterize hysteretic nonlinearities (Read, 1940), is

expected to be equal to 4/3 for purely quadratic hysteretic

nonlinearity (Lebedev, 1999).

III. MATERIALS AND METHODS

A. Samples

Specimens from different classes of materials were

tested: (1) polymers [poly(methyl methacrylate) (PMMA)

and polyvinyl chloride (PVC)] known to exhibit no
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hysteretic behavior but only small classical nonlinearities

and commonly used as test standards (Johnson et al., 2004);

(2) geomaterials (chalk and travertine) exhibiting highly

nonlinear hysteretic elasticity; (3) polycrystalline metals

(stainless steel 304, brass, aluminum AU4G) generally con-

sidered to be linear or weakly nonlinear, and (4) dry bovine

cortical bone. PMMA and PVC were tested to be certain that

the electrical system and contact nonlinearities had no influ-

ence. For each material, three samples were tested for repeat-

ability three times each with intermediate repositioning

(except for PVC, chalk, and travertine, only two samples).

All samples have the same parallelepiped shape with size 2

mm� 4 mm� 50 mm, except for chalk (6 mm� 6 mm� 65

mm) and travertine rock (4 mm� 8 mm� 50 mm). These

dimensions were chosen as being optimal for the four-point

bending mechanical fatigue tests that will be conducted in

ongoing studies with cortical bone.

B. NRUS

Each sample was probed by a swept-sine encompassing

the first three modes of the material (assumed to be pure

compression modes under symmetric loading conditions).

The frequency band around the resonance frequency is

f0 6 Df, where Df¼ 5%. The source consisted of a piezocer-

amic emitter bonded to the sample with cyanoacrylate glue.

The sample was placed on a foam block to avoid contact

nonlinearity. The input signal was a linear chirp centered on

f0, the resonance frequency at the lowest drive amplitude.

The frequency sweep duration, t� Q= pf0ð Þ, ranging from

100 ms to 1 s, was heuristically chosen as a compromise to

prevent inducing temperature increase of the sample while at

the same time reaching as to as possible a steady state at

each frequency during the sweep. The voltage amplitude of

the input signal was carefully adapted to each sample (1) to

induce minimum strain peak amplitude larger than 10�6 con-

sistent with a hysteretic regime and (2) a maximum strain

level lower than 10�4 to prevent sample damage and piezo-

ceramics debonding. A reference resonance curve was first

obtained at the lowest strain level. The resonance frequency

f0 (also energy loss Q�1
0 ) was determined and used as a refer-

ence frequency (reference energy loss). The peak resonance

frequency f and energy loss Q�1 were then measured as a

function of strain applying increasing voltage drive level.

The experimental protocol was carefully designed to ensure

that the excitation duration and voltage level do not generate

slow dynamics for all materials. To this goal, we applied the

method described by Johnson and Sutin (2005) with specific

excitation duration of 1 s. A delay of 3 s between each drive

level test was used to minimize memory and conditioning

effects [slow dynamics (TenCate and Shankland, 1996)] and

to allow the samples to recover to their initial state before

each sequential excitation amplitude. The time interval was

based on repeated tests to determine the duration of the ma-

terial slow dynamics. The nonlinear parameters af and aQ

were extracted from a linear fit to the experimental data

according to Eqs. (2) and (3). In this procedure, the sample

is assumed to remain in the same state for all the excitation

drive levels as it was at the lowest drive level (i.e., no tem-

perature change, no damage or slow dynamics conditioning

occurring over the course of a single experiment) (Pasqualini

et al., 2007). The dynamic strain amplitude e was calculated

from the longitudinal particle displacement u measured by a

laser vibrometer LSV 1 MHz (SIOS, Germany), the phase

velocity c (determined by time of flight method), and the fre-

quency f0:

e ¼ 2pf0
c

u: (4)

During the experiments, room temperature was controlled

(25 �C 6 2 �C). The sample was placed in a polystyrene box

to minimize local temperature variations. The sample tem-

perature was monitored by noncontact infrared thermometer

with a resolution of 0.02 �C.

C. Data processing

Since both the resonance frequency and attenuation are

known to vary with temperature, samples require substantial

care in terms of controlling the temperature. In order to

avoid such error sources, frequently efforts are made to

enclose the sample in a climate chamber. For example, Pas-

qualini et al. (2007) described stringent experimental condi-

tions to achieve long-term frequency stability of 60.1Hz

with a long-term thermal stability of 10 mK. Such conditions

could not be reached with our experimental chamber. Our

observations revealed that temperature fluctuations could be

of the order of 6 0.5 �C over the course of a single experi-

ment [Fig. 1(a)]. Hence, the determination of frequency and

damping shifts as functions of strain is complicated by the

fact that external conditions (e.g., temperature) lead to shifts

in frequency and damping (e.g., via heating) which can be as

large as that caused by intrinsic material nonlinearity (Fig.

2). To overcome this effect, we adopted an approach inspired

by Pasqualini et al. (2007).

The initial reference resonance curve was obtained at

the lowest strain level. The excitation level was increased

and a new resonance curve was obtained. Then the resonance

reference curve was repeated at the lowest drive level. This

procedure was repeated at progressively increasing excita-

tion drive levels, so that n reference resonance frequencies

f0,n were collected. If the sample remains in the same state

over the course of the experiment (e.g., no change of temper-

ature), the repeated resonance curve at the lowest strain level

should match the initial reference curve. If temperature

changes, the repeated frequency curve peak resonance f0,n

will change. An example is shown for a bone sample in Fig.

1, where temperature changes of �0.7 �C and þ0.2 �C are

observed during two repeated NRUS measurements. Varia-

tions in reference resonance frequency f0,n mirror those of

temperature, indicating that temperature indeed is the main

source of these variations. Temperature will also affect the

peak resonance frequency at higher excitation drive level

[Fig. 2(a)]. Note that if slow mechanics was essential at the

considered excitation levels, its effect on low drive reference

curve should be reproducible. This is not the case, as illus-

trated in Fig. 1. The reference curve is mainly correlated
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with temperature variations that are due to the room temper-

ature regulation.

Therefore, applying Eqs. (2) and (3) with the initial ref-

erence resonance peak frequency f0 to derive af and aQ, will

lead to erroneous values. A correction can be applied by

using f0,n instead of f0 in Eqs. (2) and (3). Using this correc-

tion, at each excitation level, the shift in f and Q�1 is now

relative to the environmentally modified f0,n and Q�1
0;n. An

example is illustrated in Fig. 2 for the bone specimen (same

data as those in Fig. 1). While the uncorrected frequency

shift [Fig. 2(a)] displays variations with strain mirroring tem-

perature changes, we found a repeatable linear relationship

between corrected frequency shift and strain, as predicted by

quadratic hysteresis elastic nonlinearity [Eq. (1)]. This sug-

gests the efficiency of the procedure to correct undesirable

material state variations and to capture intrinsic nonclassical

nonlinear properties. Temperature was found to be less influ-

ential on energy loss (data not shown). The correction was

applied to all the specimens. In the following, we detail

results obtained for all the materials. The repeatability is

assessed via the coefficient of variation CV%¼SD/l, where

SD and l are the standard deviation and mean value obtained

FIG. 1. Bone sample, first mode. (a) Temperature variations recorded at the sample surface during two different NRUS experiments. (b) Corresponding shift

in f0,n (lowest excitation level).

FIG. 2. Bone sample, first mode. (a) Frequency shift computed with Eq. (2) obtained during two different NRUS experiments. (b) Corrected frequency shift

computed with Eq. (2) where f0 is replaced by f0,n. Temperature effects, if uncorrected, may result in frequency shifts (a) that overpass intrinsic nonlinear fre-

quency shifts (b).
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for three repeated measurements with intermediate

repositioning.

IV. RESULTS

Figure 3 shows the corrected frequency and damping

shifts for all materials tested (second compression mode).

The absence of variation for polymers (PMMA and PVC)

even for high strain levels up to 5� 10�5 confirms that our

experimental setup is linear. For all other materials (chalk,

bone, stainless steel, aluminum, and brass), a quasi-linear de-

pendence with strain was found for both the elastic and dissi-

pative parts of the complex modulus.

Table I shows the coefficients of variation of uncor-

rected and corrected af and aQ. The correction yielded signif-

icantly reduced CVs, especially in the case of bone,

aluminum, and brass, the three materials with the weakest

nonlinear properties. For these materials, and particularly for

bone (uncorrected data, CV of 201.9%; corrected data, CV

of 16.2%), the variation in uncorrected resonance frequency

would mostly reflect the influence of temperature. Without

correction, intrinsic weak nonlinear behavior could not be

observed. In contrast, moderate or no change in CV was

obtained after correction for the three materials with the

highest nonlinear properties (stainless steel, pastel chalk, and

travertine). Note that the reduction in CVs was more pro-

nounced for af than for aQ, indicating that the resonance fre-

quency is more influenced by environmental factors than

damping. In summary, our results illustrate that the correc-

tion procedure is useful to enhance the sensitivity of NRUS,

especially for weakly nonlinear materials and is useful in

retrieving weak nonlinear properties.

Mean values of af and aQ for the first three compression

modes are summarized in Tables II and III. Nonlinear prop-

erties are weak for bone, aluminum, and brass (af¼�5.0.2

to �29.9 and aQ¼ 2.1–22.6). These properties were found to

be one order of magnitude higher for stainless steel 304

(af>�113 and aQ> 90.6) and chalk (af¼�39.3 to �256.1

and aQ¼ 13.5–80.4). Travertine (a calcium carbonate rich

precipitate rock) is the most nonlinear material (af¼�1238

to �1401 and aQ¼ 192–228). With af ranging from �5.0 to

�6.9 and aQ ranging from �2.1 to �3.6, dry cortical bovine

bone manifests the smallest nonlinear properties. Note that

values of af and aQ could not be measured for the first mode

of brass and stainless steel, due to overlapping resonant

peaks.

While the Read ratio paQ/2af was found close to 4/3 for

metallic samples (aluminum: 1.03 for mode 1, 1.31 and 1.36

for modes 2 and 3, respectively; brass: 1.09 and 1.19 for

modes 1 and 2, respectively; steel: 1.28 and 1.25 for modes

2 and 3, respectively), strong variations were observed for

other materials (bone: 0.61–1.13; pastel chalk: 0.46–0.80;

travertine: 0.26–0.80).

V. DISCUSSION

High-accuracy measurements of the complementary

variations in the elasticity and dissipation with careful com-

pensation of thermal effects are made for the first time. Si-

multaneous amplitude-dependent variations in the elasticity

FIG. 3. Frequency (a) and damping (b) (second compression mode) dependence on strain level for all materials tested (one sample of each).

TABLE I. Mean coefficient of variation (CV) of nonlinear parameters (af,

aQ) before and after correction (no data for PMMA and PVC, which are

linear).

af variability (CV) aQ variability (CV)

Uncorrected

(%)

Corrected

(%)

Uncorrected

(%)

Corrected

(%)

Bovine bone 201.9 16.2 19.5 14.2

Aluminum 30.8 6.2 5.8 4.2

Brass 13.6 6.9 7.0 6.5

Stainless steel 5.4 4.9 4.8 3.6

Pastel chalk 5.1 3.1 7.0 7.3

Travertine 7.1 7.0 13.4 21.7
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(af) and dissipation (aQ) are specific signatures of hysteretic

nonlinearity of soft structural defects. However, our data

need careful interpretation, because in the case of nonlinear-

ity induced by the presence of soft defects, the situation may

be more complex, since very similar simultaneous

amplitude-dependent variations in the elasticity and dissipa-

tion can also arise from nonhysteretic mechanisms such as

thermoelastic or viscous losses (Zaitsev and Sas, 2000; Fil-

linger et al., 2006; Zaitsev and Matveev, 2006).

The amplitude dependence of dissipation and modulus

are well fitted by a linear law for all the measured materials,

as expected from quadratic hysteretic nonlinearity. Devia-

tions from a linear dependence have been observed by others

due to a combination of classical cubic-in-strain nonlinearity

of the lattice with quadratic hysteresis (Pasqualini et al.,
2007), to a nonquadratic hysteresis such as shown by Naza-

rov in lead (Nazarov, 1999) or zinc (Nazarov and Kolpakov,

2000). In our case, given the relatively narrow range of vari-

ation of the amplitude excitation (over one order of magni-

tude only), our data could be approximated by a linear fit as

well as with a power law with good accuracy. Thus, we think

that our experimental data do not allow concluding on the

linear (i.e., purely quadratic hysteretic) or nonlinear (i.e., not

purely hysteretic or nonquadratic hysteretic) amplitude de-

pendence of elasticity and dissipation. To reach the conclu-

sion that a power law or a polynomial function yields a

better prediction, a greater strain range would be required.

Mean values of af and aQ are consistent for the three

measured modes in bone, aluminum, brass, steel, travertine

(Table III), meaning that the nonlinearity is quasi-frequency

independent. Small discrepancies observed between the dif-

ferent modes (bone, aluminum, brass, steel, travertine) may

be due to measurement errors. They can also be attributed to

differences in the contributions of the different modes to the

nonlinearity because of the spatial inhomogeneity in the dis-

tribution of soft defects in the samples or of the modal strain

amplitude that has been found to explain a significant

amount of the variation of af and aQ between modes (Van

Den Abeele, 2007). For pastel chalk, the nonlinear character-

istics of mode 1 deviates substantially from those of modes 2

and 3 (Table III). In this case, the spatial distribution of

nodes and anti-nodes is not sufficient to explain the observed

increase of af and aQ with resonant frequency. Actually,

besides producing additional amplitude-dependent dissipa-

tion, the effective viscoelastic properties of the defects can

lead to a very pronounced frequency-dependent variation of

the material nonlinearity (Zaitsev et al., 2001; Zaitsev et al.,
2002; Zaitsev and Matveev, 2006). These corrections are dif-

ferent for different materials, and in the case of pastel chalk,

the strong discrepancy between the nonlinearity observed for

different modes may arise from such a nonhysteretic mecha-

nism competing with the genuine intrinsic hysteretic behav-

ior. The separation of the respective contribution of the two

mechanisms (the hysteretic one and the nonhysteretic one) to

the material nonlinearity would require additional

experiments.

If we compare the so-called Read ratio (paQ/2af) for dif-

ferent materials, the experimentally observed ratios differ

over 5 times. Read ratios of polycrystalline metals (alumi-

num, brass, and stainless steel) are within 5–20% accuracy,

close to 4/3 expected for the quasi-static quadratic hysteresis.

This suggests that the nonhysteretic source of material nonli-

nearity mentioned earlier is not significant for the metallic

samples measured in this work. For other materials (cortical

bone, chalk, and travertine rock) the difference is much

stronger: The Read ratio can be much lower than the theoret-

ical value (e.g., for travertine rocks, the Read ratio is 0.25).

This strong discrepancy in the apparent Read’s parameter

can be understood if we take into account that the finite

relaxation time of the defects (their effective viscosity) pro-

duces corrections to the complementary variations in the

elasticity and dissipation as mentioned earlier. Obviously,

these corrections are different for different materials, so that

the apparent Read ratio can vary strongly between different

materials.

Our values for geomaterials are consistent with values

reported previously in the literature (Johnson and Sutin,

2005). Some results on polycrystalline metals can be found

in Nazarov et al. (1988); Nazarov (1991); Nazarov and Kol-

pakov (2000). Hysteretic elastic behavior for stainless steel,

aluminum, and brass has rarely been observed [brass (Jon et
al., 1976); aluminum (Chambers and Smoluchowski, 1960);

steel (Masumoto et al., 1979)], whereas it is well known in

polycrystalline metals such as zinc (Read, 1940; Lebedev et
al., 1993; Nazarov and Kolpakov, 2000), copper (Nowick,

1950), Cu-based alloys (Kustov et al., 2006), and ternary

carbide, Ti3SiC2 (Finkel et al., 2009).

We note that the results may be affected by damage

induced when cutting the samples as well as by thermal

treatment (quenching, annealing) inherent to the metallic

plate’s production. While our experiments do not strictly

allow eliminating extra damage induced by sample prepara-

tion, the higher nonlinearity observed in steel compared

to other metallic samples may have its source in larger

grain mobility due to the coexistence of two phases

(perliteþ ferrite a). Interestingly, complementary measure-

ments achieved in the laboratory (data not shown) on a

TABLE II. Mean hysteretic reactive parameter (af).

af mode 1 af mode 2 af mode 3

Bovine bone �5.0 6 2.5 �5.1 6 0.3 �6.9 6 0.6

Aluminum �12.2 6 2.2 �16.3 6 0.4 �19.5 6 1.5

Brass — �27.3 6 3.2 �29.9 6 1.2

Stainless steel — �120.0 6 9.6 �113.9 6 11.6

Pastel chalk �39.3 6 1.4 �157 6 6.8 �256.1 6 6.2

Travertine �1377.8 6 71.7 �1401.2 6 141.6 1238.6 6 72.2

TABLE III. Mean hysteretic dissipative parameter (aQ).

aQ mode 1 aQ mode 2 aQ mode 3

Bovine bone 3.6 6 2.5 2.1 6 0.3 2.7 6 0.6

Aluminum 8 6 2.2 13.6 6 0.4 16.9 6 1.5

Brass — 18.9 6 3.2 22.6 6 1.2

Stainless steel — 98.2 6 9.6 90.6 6 11.6

Pastel chalk 13.5 6 0.5 80.4 6 11.1 74.5 6 2.6

Travertine 192.9 6 49.8 228.3 6 46.5 204.3 6 38.6
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stainless steel 304 specimen with different sample prepara-

tion (no cutting was performed, except to both ends), differ-

ent shape (rod), larger dimensions (200 mm in length and 30

mm in diameter), and lower resonant frequency (6 kHz)

yielded comparable results, which supports the assumption

that the intrinsic quadratic hysteretic behavior of stainless

steel 304 was indeed measured on the small specimen. This

result is remarkable, and suggests that given sufficient noise

reducing procedures, other metals and single crystals consid-

ered classically nonlinear of the Landau type should be

tested as well. The paradigm of hysteretic nonlinearity may

extend far beyond the materials currently considered as

such.

VI. CONCLUSIONS

In this contribution, we presented a new data processing

to analyze NRUS data obtained on small specimens, in

which the frequency shift Df is measured relative to a refer-

ence resonance peak curve f0,n (obtained at the lowest excita-

tion level) which is repeated before each excitation drive

level. Our results show that the correction procedure may be

used as an alternative to stringent temperature control by

increasing significantly NRUS precision and sensitivity.

With our correction procedure, we measured relative reso-

nant frequency shifts of 10�5, well below 10�4, often consid-

ered the limit to NRUS sensitivity under common

experimental conditions. Enhanced sensitivity would permit

measurement of weak manifestation of nonclassical nonlin-

ear elasticity of soft structural defects in materials such as

bone, and monitoring subtle changes in nonlinear properties

induced by damage accumulation (e.g., occurring during a

progressive damage test).

In our experiments, we identified external temperature

fluctuations as the major source of resonance frequency vari-

ation. A variation of 0.1 �C at the bone sample surface

caused a frequency variation of 0.01% (Fig. 1), which is sim-

ilar to the expected nonlinear frequency shift for weakly

nonlinear materials. In the absence of correction, the data

could not be interpreted to support the existence of nonclass-

ical nonlinear behavior in bone (Fig. 2). Besides tempera-

ture, other factors may affect the elastic response of a

material (and its resonance) and compete with material

intrinsic nonlinearity. These include environmental factors

(e.g., humidity, pressure), conditioning and long-time relaxa-

tion effects (TenCate et al., 2004). The advantage of our cor-

rection procedure is that (1) it allows for differences in the

starting values of f0 whatever the origin of these differences

and (2) that it automatically corrects for these differences,

except if environmental factor variation is large and fast

enough to change the nonlinearity itself during measurement

(Van Den Abeele et al., 2002) which should not be the case

under ambient conditions. Applying the method, nonhyste-

retic viscous-like and/or thermoelastic mechanisms cannot

be easily disentangled from genuine hysteretic mechanisms,

as both hysteretic and nonhysteretic phenomena compete

during NRUS measurements. In order to isolate the nonhys-

teretic contribution to elastic and dissipative nonlinear varia-

tion, one should consider working at frequencies not

affected by frequency-dependent attenuation (e.g., using

quasi-static measurements) or at different modes over the

larger possible frequency band.

Finally, we report nonlinear values for a number of

materials. Thanks to the correction procedure applied in this

work, we report nonclassical nonlinearity in materials (steel,

brass, and aluminum) that were generally assumed to be

only classically nonlinear in past work.
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